		tment of f matics \qquad	INDIAN SCHOOL AL WADI AL KABIR Class IX, Mathematics Worksheet-Triangles					
Q. No.	Questions of 1 Mark each.							
1.	Which of the following is not a criterion for congruence of triangles?							
	(A)	SAS	(B)	ASA	(C)	SSA	(D)	SSS
2.	If $\mathrm{AB}=\mathrm{QR}, \mathrm{BC}=\mathrm{PR}$ and $\mathrm{CA}=\mathrm{PQ}$, then							
	(A)	$\triangle A B C \cong \triangle \mathrm{PQR}$	(B)	$\triangle \mathrm{CBA} \cong \triangle \mathrm{PRQ}$	(C)	$\triangle B A C \cong \triangle R P Q$	(D)	$\triangle \mathrm{PQR} \cong \triangle \mathrm{BAC}$
3.	In triangles ABC and $\mathrm{PQR}, \mathrm{AB}=\mathrm{AC}, \angle \mathrm{C}=\angle \mathrm{P}$ and $\angle \mathrm{B}=\angle \mathrm{Q}$. The two triangles are:							
	(A)	Isosceles but not congruent	(B)	Isosceles and congruent	(C)	Congruent but not isosceles	(D)	Neither congruent nor isosceles.
4.	Observe the given triangles and choose the right answer.							
	(A)	$\triangle \mathrm{ABC} \cong \triangle \mathrm{QPR}$	(B)	$\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$	(C)	$\triangle A B C \cong \triangle P R Q$	(D)	$\triangle \mathrm{BAC} \cong \triangle \mathrm{RPQ}$
5.	It is given that $\triangle \mathrm{ABC} \cong \triangle \mathrm{FDE}$ and $\mathrm{AB}=5 \mathrm{~cm}, \angle \mathrm{~B}=40^{\circ}$ and $\angle \mathrm{A}=80^{\circ}$. Then which of the following is true?							
	(A)	$\begin{aligned} & \mathrm{DF}=5 \mathrm{~cm}, \\ & \angle \mathrm{~B}=60^{\circ} \end{aligned}$	(B)	$\begin{aligned} & \mathrm{DE}=5 \mathrm{~cm}, \\ & \angle \mathrm{E}=60^{\circ} \end{aligned}$	(C)	$\begin{aligned} & \mathrm{DF}=5 \mathrm{~cm}, \\ & \angle \mathrm{E}=60^{\circ} \end{aligned}$	(D)	$\begin{aligned} & \mathrm{DE}=5 \mathrm{~cm}, \\ & \angle \mathrm{D}=40^{\circ} \end{aligned}$

6.	In figure, if $\mathrm{AB}=\mathrm{DC}, \angle \mathrm{ABD}=\angle \mathrm{CDB}$, which congruence rule would you apply to prove $\triangle \mathrm{ABD} \cong \triangle \mathrm{CDB}$?
7.	In the given figure, prove that $\triangle \mathrm{ABD} \cong \triangle \mathrm{BAC}$?
Civen $\triangle \mathrm{OAP} \cong \triangle \mathrm{OBP}$ in the figure below. Prove	
criteria by which the triangles are congruent.	
In the given figure, $\angle \mathrm{ACB}=\angle \mathrm{BDA}, \angle \mathrm{ABD}=\angle \mathrm{BAC}$. Prove that $\triangle \mathrm{AOB}$ is	

10.	In the figure, if $\mathrm{AF}=\mathrm{CD}, \angle \mathrm{AFE}=\angle \mathrm{CDE}$, Prove that $\mathrm{EF}=\mathrm{ED}$.
11.	Prove that the angle opposite to equal sides of a triangle are equal
12.	ABC is an isosceles triangle with $\mathrm{AB}=\mathrm{AC} . \mathrm{P}$ and Q are points on AB and AC respectively such that $\mathrm{AP}=\mathrm{AQ}$, Prove that $\angle \mathrm{ACP}=\angle \mathrm{ABQ}$, and $\mathrm{CP}=\mathrm{BQ}$.
13.	In the figure below, ABCD is a square and P is the mid- point of AD . BP and CP are joined. Prove that $\angle \mathrm{PCB}=\angle \mathrm{PBC}$.

14.	In figure, $\mathrm{AB}=\mathrm{EF}, \mathrm{BC}=\mathrm{ED}, \mathrm{AB} \perp \mathrm{BD}, \mathrm{EF} \perp \mathrm{EC}, \mathrm{Prove}$ that $\triangle \mathrm{ABD} \cong \triangle \mathrm{FEC}$.	
15.	In the given figure, if $\mathrm{AB} \\| \mathrm{DC}$ and P is the mid-point of BD, Prove that P is also the mid-point of AC.	
16.	In the figure, $\mathrm{OA}=\mathrm{OB}, \mathrm{OC}=\mathrm{OD}$ and $\angle \mathrm{AOB}=\angle \mathrm{COD}$. Prove that $\mathrm{AC}=\mathrm{BD}$.	
17.	In figure, $\triangle \mathrm{ABC} \cong \triangle \mathrm{ABD}$ are such that $\mathrm{AD}=\mathrm{BC}, \angle 1=\angle 2$ and $\angle 3=\angle 4 . ~ P r o v e ~ t h a t ~$ $\mathrm{BD}=\mathrm{AC}$.	

18.	In fig. $\mathrm{AD}=\mathrm{CD}$ and $\mathrm{AB}=\mathrm{CB}$. State three pairs of equal parts in $\triangle \mathrm{ABD} \cong \triangle \mathrm{CBD}$. Is $\triangle \mathrm{ABD} \cong \triangle \mathrm{CBD}$? Why or why not? Does BD bisect $\angle \mathrm{ABC}$? Give reasons. 19. CASE STUDY: A triangular based agricultural field $A B C$ is divided by the farmer in four parts. In two parts of his field he wants to grow sugarcane and other two parts he wants to grow wheat. He wants to grow wheat on the field division exactly which are exactly same in shape and size, the same he wants to do sugarcane. If $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DBC}$ are two isosceles triangles on the same base BC and vertices A and D are on the same side BC . AD is extended to intersect BC at P . With reference to the figure given, answer the following questions. i)Prove that $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$. ii) Prove that $\triangle \mathrm{APB} \cong \triangle \mathrm{APC}$.

20.	$A B$ is a line segment. P and Q are points on opposite sides of $A B$ such that each of them is equidistant from the points A and B. Show that the line PQ is the perpendicular bisector of AB .							
	Answers							
$\begin{aligned} & \mathscr{0} \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \end{aligned}$	1	C	2	B	3	A	4	QA
	5	C	6	SAS	7	$\begin{gathered} \mathrm{AD}=\mathrm{BC}, \\ \mathrm{AB}=\mathrm{BA} \\ \angle \mathrm{D}=\angle \mathrm{C}=90^{\circ} \\ \text { By RHS } \end{gathered}$	8	$\begin{gathered} O A=O B, \\ \angle 1=\angle 2, O P=O P \\ \text { BY SAS } \end{gathered}$
	9	$\begin{gathered} \angle \mathrm{C}=\angle \mathrm{D}, \\ \mathrm{AB}=\mathrm{AB} \\ \angle \mathrm{ABD}=\angle \mathrm{BAC} \\ \mathrm{By} \mathrm{AAS} \end{gathered}$	10	$\begin{gathered} \mathrm{AF}=\mathrm{CD}, \\ \angle \mathrm{AFE}=\angle \mathrm{CDE} \\ \angle \mathrm{E}=\angle \mathrm{E} \\ \text { By AAS } \end{gathered}$	11	$\begin{gathered} \angle 1=\angle 2, \\ \mathrm{AD}=\mathrm{AD}, \\ \mathrm{AB}=\mathrm{AC} \\ \mathrm{By} \text { SAS } \end{gathered}$	12	$\begin{gathered} \mathrm{AB}=\mathrm{AC}, \mathrm{AP}=\mathrm{AQ}, \\ \angle \mathrm{~A}=\angle \mathrm{A} \\ \mathrm{By} \text { SAS } \end{gathered}$
	13	$\begin{gathered} \mathrm{AP}=\mathrm{DP}, \mathrm{AB}=\mathrm{DC} \\ \angle \mathrm{~A}=\angle \mathrm{D}=90^{\circ} \\ \text { By } \mathrm{SAS} \end{gathered}$	14	$\begin{gathered} \mathrm{AB}=\mathrm{EF} \\ \angle \mathrm{~B}=\angle \mathrm{E}=90^{\circ} \\ \mathrm{BC}=\mathrm{ED} \\ \mathrm{BC}+\mathrm{CD}=\mathrm{ED}+\mathrm{CD} \\ \mathrm{BD}=\mathrm{EC}, \mathrm{By} \text { SAS } \end{gathered}$	15	$\begin{aligned} & \mathrm{BP}=\mathrm{DP}, \\ & \angle 1=\angle 2, \\ & \angle 3=\angle 4 \\ & \text { By AAS } \end{aligned}$	16	$\begin{gathered} \mathrm{OA}=\mathrm{OB}, \\ \mathrm{OC}=\mathrm{OD}, \\ \angle \mathrm{AOB}=\angle \mathrm{COD} \\ \angle \mathrm{AOC}=\angle \mathrm{BOD} \\ \mathrm{By} \text { SAS } \end{gathered}$
	17	By SAS	18	By SSS	19	By SAS	20	To be proved by using SSS and SAS

