Department of Mathematics			INDIAN SCHOOL AL WADI AL KABIR Class IX, Mathematics Worksheet-Triangles					
Q. No.	Questions of 1 Mark each.							
1.	Which of the following is not a criterion for congruence of triangles?							
	(A)	SAS	(B)	ASA	(C)	SSA	(D)	SSS
2.	If AB=QR, BC=PR and CA=PQ, then							
	(A)	$\Delta ABC \cong \Delta PQR$	(B)	$\Delta CBA \cong \Delta PRQ$	(C)	$\Delta BAC \cong \Delta RPQ$	(D)	∆PQR ≅∆BAC
3.	In tri	angles ABC and PC	QR, AB	$=$ AC, \angle C $= \angle$ P and \angle	B = 2	Q. The two tria	ngles a	are:
	(A)	Isosceles but not congruent	(B)	Isosceles and congruent	(C)	Congruent but not isosceles	(D)	Neither congruent nor isosceles.
4.	B	A 70°	3.5cm	n C p	2	3.5cm		
	(A)	∆ABC ≅∆QPR	(B)	∆ABC ≅∆PQR	(C)	ΔABC ≅ΔPRQ	(D)	∆BAC ≅∆RPQ
5.	It is g true?	given that ΔABC ≅Δ	FDE and	AB= 5cm, $\angle B = 40^{\circ}$ a	nd ∠A	$h = 80^{\circ}$. Then wh	nich of	f the following is
	(A)	DF=5cm, ∠B = 60°	(B)	DE=5cm, ∠E = 60°	(C)	DF=5cm, ∠E = 60°	(D)	$DE=5cm,$ $\angle D = 40^{\circ}$

	In figure, if AB=DC, \angle ABD = \angle CDB, which congruence
6.	rule would you apply to prove $\triangle ABD \cong \triangle CDB$? D C C ABD $\cong \triangle CDB$?
7.	In the given figure, prove that $\triangle ABD \cong \triangle BAC?$
	Given $\triangle OAP \cong \triangle OBP$ in the figure below. Prove
8.	criteria by which the triangles are congruent.
9.	In the given figure, $\angle ACB = \angle BDA$, $\angle ABD = \angle BAC$. Prove that $\triangle AOB$ is isosceles.

10.	In the figure, if $AF = CD$, $\angle AFE = \angle CDE$,
	Prove that $EF = ED$.
	P∕ XF
	A
	Questions of 2 marks each
11.	Prove that the angle opposite to equal sides of a triangle are equal.
12.	ABC is an isosceles triangle with $AB = AC$. P and Q are
	points on AB and AC respectively such that $AP = AQ$, A
	Prove that $\angle ACP = \angle ABQ$, and $CP = BQ$.
	71
	$^{P} \lambda \lambda^{\circ}$
	В
13	In the figure below ABCD is a square and P is the mid-
13.	no int of AD_RP and CP are joined. Prove that
	point of AD. Br and Cr are joined. Prove that

14.	In figure, AB=EF, BC=ED, AB \perp BD, EF \perp EC, Prove that \triangle ABD \cong \triangle FEC.
15.	In the given figure, if AB DC and P is the mid-point of BD,
	Prove that P is also the mid-point of AC.
	Questions of 3 marks each
16.	In the figure, OA=OB, OC=OD and $\angle AOB=\angle COD$. Prove that
	AC = BD. AC = D
17.	In figure, $\triangle ABC \cong \triangle ABD$ are such that $AD=BC$, $\angle 1=\angle 2$ and
	$\angle 3 = \angle 4$. Prove that BD = AC.

18.	In fig. AD= CD and AB = CB. State three pairs of equal parts in $\triangle ABD \cong \triangle CBD$. Is $\triangle ABD \cong \triangle CBD$? Why or why not? Does BD bisect $\angle ABC$? Give reasons.
	Questions of 4 marks each
19.	CASE STUDY: A triangular based agricultural field ABC is divided by the farmer in four parts. In two parts of his field he wants to grow sugarcane and other two parts he wants to grow wheat. He wants to grow wheat on the field division exactly which are exactly same in shape and size, the same he wants to do sugarcane. If $\triangle ABC$ and $\triangle DBC$ are two isosceles triangles on the same base BC and vertices A and D are on the same side BC. AD is extended to intersect BC at P. With reference to the figure given, answer the following questions. i)Prove that $\triangle ABD \cong \triangle ACD$. ii) Prove that $\triangle APB \cong \triangle APC$.

20.	AB is a line segment. P and Q are points on opposite sides of AB such that each of them is equidistant from the points A and B. Show that the line PQ is the perpendicular bisector of AB. $A \qquad \qquad$							
	Answers							
	1	С	2	В	3	А	4	QA
Answers	5	С	6	SAS	7	AD=BC, AB=BA ∠D=∠C=90° By RHS	8	0A=0B, ∠1=∠2, 0P=0P BY SAS
	9	∠C=∠D, AB=AB ∠ABD=∠BAC By AAS	10	AF=CD, ∠AFE=∠CDE ∠E=∠E By AAS	11	∠1=∠2, AD=AD, AB=AC By SAS	12	AB=AC,AP=AQ, ∠A=∠A By SAS
	13	AP=DP,AB=DC ∠A=∠D=90° By SAS	14	AB=EF ∠B=∠E=90° BC=ED BC+CD=ED+CD BD=EC, By SAS	15	BP=DP, $\angle 1 = \angle 2$, $\angle 3 = \angle 4$ By AAS	16	OA=OB, OC=OD, $\angle AOB=\angle COD$ $\angle AOC=\angle BOD$ By SAS
	17	By SAS	18	By SSS	19	By SAS	20	To be proved by using SSS and SAS